Multi-rogue wave solutions for a generalized integrable discrete nonlinear Schrödinger equation with higher-order excitations

نویسندگان

چکیده

In this paper, we construct the discrete higher-order rogue wave (RW) solutions for a generalized integrable nonlinear Schrödinger (NLS) equation. First, based on modified Lax pair, version of Darboux transformation is constructed. Second, dynamical behaviors first-, second- and third-order RW are investigated in corresponding to unique spectral parameter, term coefficient, free constants. The differences between solution NLS equation that Ablowitz–Ladik (AL) illustrated figures. Moreover, explore numerical experiments, which demonstrates strong-interaction RWs stabler than weak-interaction RWs. Finally, modulation instability continuous waves studied.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions.

We consider an extended nonlinear Schrödinger equation with higher-order odd (third order) and even (fourth order) terms with variable coefficients. The resulting equation has soliton solutions and approximate rogue wave solutions. We present these solutions up to second order. Moreover, specific constraints on the parameters of higher-order terms provide integrability of the resulting equation...

متن کامل

Classifying the hierarchy of nonlinear-Schrödinger-equation rogue-wave solutions.

We present a systematic classification for higher-order rogue-wave solutions of the nonlinear Schrödinger equation, constructed as the nonlinear superposition of first-order breathers via the recursive Darboux transformation scheme. This hierarchy is subdivided into structures that exhibit varying degrees of radial symmetry, all arising from independent degrees of freedom associated with physic...

متن کامل

Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation.

In this paper, using the Darboux transformation, we demonstrate the generation of first-order breather and higher-order rogue waves from a generalized nonlinear Schrödinger equation with several higher-order nonlinear effects representing femtosecond pulse propagation through nonlinear silica fiber. The same nonlinear evolution equation can also describe the soliton-type nonlinear excitations i...

متن کامل

Second-order nonlinear Schrödinger equation breather solutions in the degenerate and rogue wave limits.

We present an explicit analytic form for the two-breather solution of the nonlinear Schrödinger equation with imaginary eigenvalues. It describes various nonlinear combinations of Akhmediev breathers and Kuznetsov-Ma solitons. The degenerate case, when the two eigenvalues coincide, is quite involved. The standard inverse scattering technique does not generally provide an answer to this scenario...

متن کامل

Periodic waves of a discrete higher order nonlinear Schrödinger equation ∗

The Hirota equation is a higher order extension of the nonlinear Schrödinger equation by incorporating third order dispersion and one form of self steepening effect. New periodic waves for the discrete Hirota equation are given in terms of elliptic functions. The continuum limit converges to the analogous result for the continuous Hirota equation, while the long wave limit of these discrete per...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Dynamics

سال: 2021

ISSN: ['1573-269X', '0924-090X']

DOI: https://doi.org/10.1007/s11071-021-06578-x